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The Hsp90 family of chaperones plays a key role in
regulating the physiology of cells exposed to environmental
stress and in maintaining the malignant phenotype in tumor
cells. Occupancy of the ATP/ADP N-terminal pocket of
Hsp90 by the natural products geldanamycin (GM) and
radicicol (RD) interferes with the activity of the chaperone
and causes the degradation of a subset of key signaling
proteins dependent on Hsp90 function. The Her2 transmem-
brane tyrosine kinase is one of the most sensitive targets of
the drugs.1 We have designed a novel Hsp90 inhibitor, PU3,
a 9-alkyl-8-trimethoxybenzyl-purine, and demonstrated that
this simple compound binds to Hsp90 and shares the
important biological effects of GM and RD.2 PU3 is less
potent, but it is a first-generation lead compound. It is likely
that further modifications will yield derivatives with in-
creased binding affinity and activity. Here, we describe the
development of a facile synthetic route that we employed
for the parallel synthesis of over 40 derivatives of the PU3
class.

Syntheses of purine libraries have been described before;3,4

however, there is no known efficient method for making
8-benzylpurine derivatives in a high-throughput manner. One
could envision that an efficient strategy for attaining
significant structural diversity in the PU3 class would be the
cyclization of several 5-N-acylated 4,5,6-triaminopyrim-
idines, followed by 9-N-alkylation of the resulting purines.
We found, however, that cyclization of theN-(4,6-diami-
nopyrimidin-5-yl)-2-(methoxyphenyl)acetamide derivatives
(PY-A, PY-B, andPY-C) under published conditions yielded
unsatisfactory results. Use of strong acidic conditions (PPA4

or TsOH5) and high reaction temperatures resulted in a
complex mixture, mostly due to decomposition of starting
material. The method used by Dramisky6 to cyclize 5-acetyl-
amino-6-chloro-4-methylaminopyrimidine to the purine de-

rivative, that is, heating in a steel cylinder at 100°C in
ammonia-methanol, yielded an unsatisfactory 5% in our
hands.7 Moreover, these harsh conditions are highly unsuit-
able for the preparation of a library of compounds using a
parallel synthesizer.

Thus, we focused on developing an appropriate cyclization
procedure and alkylation method that are amenable to high
throughput. Our synthesis (Scheme 1) begins with the
acylation of 4,5,6-triaminopyrimidine with several methoxy-
phenylacetyl fluorides (A, B, andC) under DMAP catalysis.
The acid fluorides are conveniently generated just prior to
the coupling step, treating the phenylacetic acid with cyanuric
fluoride and pyridine.8 The acylation reaction proceeded in
high yields (60-80%) in DMF, resulting in the derivatives
PY-A, PY-B, andPY-C. After precipitation from EtOAc,
these materials were used in the cyclization step. We found
that refluxing the 5-N-acyltriaminopyrimidine derivatives
PY-A, PY-B, and PY-C in NaOMe/MeOH for 3-5 h
resulted in high conversion of the starting material (80-
90% yield) to the productsPU-A, PU-B, andPU-C. In the
last step, the purines were alkylated by the Mitsunobu
methodology.3 The use of 2.2 equiv of PPh3 and 5 equiv of
DEAD was necessary to bring the highly insoluble purines
into the reaction solution of toluene and CH2Cl2. We did
not observe satisfactory conversion by the use of THF as a
solvent for the Mitsunobu step. Once all reagents were
dissolved, the reaction proceeded rapidly: while in the case
of primary unbranched alcohols the reaction was terminated
in less than 15 min, bulkier alcohols required up to 1 h. In
addition to the desired 9-N-alkylated purine, 3-N-alkylated
products were observed up to 14-33% of the total recovered
mass. The position of the alkyl chain was unambiguously
determined by X-ray crystallography. This is an interesting
observation because alkylation of adenine gives mainly 3-N-
alkylated product in neutral conditions and7/9-N-alkylated
products when a base is present.9 However, alkylation of
PU-A, PU-B, andPU-C, using the Mitsunobu reaction or
NaH and the corresponding alkyl iodide,4 gave 9-N- and 3-N-
alkylated purines in similar ratios. The 7-N-alkyl product
was isolated only in some instances as 1-3% of the product
mix.10

Reactions were performed in parallel using the Agonaut
Quest 210 synthesizer, and mixtures were purified on a ISCO
CombiFlash system. The two isomers were easily separated
because of a significant difference inRf values (0.3-0.6).
The yields of recovery ranged from 75% to 95%. In some
cases, the formation ofPU-C-2was detected as an impurity.
This was caused by the presence of ethanol in some DEAD
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batches. Because the impurity eluted very close to the main
product, it was difficult to remove and caused a decrease in
the recovery yields. We were thereby forced to replace
DEAD with di-tert-butyl azodicarboxylate. The Mitsunobu
reaction proceeded in comparable yields using this reagent,
and its use is advisable.

Although we were only interested in applying this reaction
scheme to mono-, di-, or trimethoxybenzyl derivatives, we
feel that it will be useful in the synthesis of various other
8-benzylpurines. The Mitsunobu reaction can accommodate
a high array of primary and secondary alcohols in the
alkylation of purines. We have employed a variety of
unbranched and branched, linear and cyclic, saturated and
unsaturated primary alcohols and several secondary alcohols.
Only two alcohols, neopentyl alcohol and cyclohexanol, were
found to give no product in this reaction, probably because
of steric effects. The synthesis is amenable for high
throughput and can generate a variety of derivatives in good
yields.
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Mitsunobu Stepa

a The asterisk represents the percentage of the two isomers in the reaction mixture.
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